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Mean-field theory for car accidents
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We study analytically the occurrence of car accidents in the Nagel-Schreckenberg traffic model. We obtain
exact results for the occurrence of car acciddPts as a function of the car densify and the degree of
stochastic braking, in the case of speed limit,,=1. Various quantities are calculated analytically. The
nontrivial limit p;—0 is discussed.
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I. INTRODUCTION (1) Acceleration: Ifv <v .y, thenv—uv +1. (2) Slowing
down: If v>d, thenv—d. (3) Randomization: I >0, then
The cellular automaton models of traffic flow have at-v—uv —1 with probabilityp;. (4) Motion: The position of a
tracted much interest recentll]. Instead of differential car is shifted by its speed.
equations, the underlying dynamics is governed by a few The number of empty cells in front of a car is denoted by
simple update rules. They allow the flexibility to adapt com-d. The first three rules adjust the speed of a car, which is then
plicated features observed in real traffic and can be used vepplied in the fourth rule. The acceleration under the speed
efficiently for computers to perform real-time simulations. limit and the slowing down due to the car ahead are pre-
Numerical works in numerous applications have been rescribed by the first two rules. Without the third rule, the
ported[2]. In contrast, we know very little about the analyti- model is deterministic. The third rule introduces a noise to
cal properties. As one does not have a Hamiltonian descripsimulate the stochastic driving behavior. These update rules
tion, standard methods in statistical mechanics are naare applied in parallel to all cars. Iterations over these simple
applicable. Not much has been known about the exact soluules already give realistic results.
tions of discrete-time update. The use of parallel update in- In the basic model, car accidents will not occur. The sec-
troduces further difficulties for the strong correlations in-ond rule of the update is designed to avoid accidents; the
volved. There is a need for exact solutions that may providelriving scheme respects the safety distance. In real traffic,
better insight to the models and greatly help to reduce thear accidents occur most likely when drivers do not respect
need for computer resources. the safety distance, which often happens when the car ahead
More recently, the occurrence of car accidents in a celluis moving. If a moving car is suddenly stopped, a careless
lar automaton model has been studied numerically in a speadriving of the following car will result in an accident. Thus
cial case[3]. Later, general results are reportel. Basi- the occurrence of car accidents can be associated with the
cally, there are two parameters: speed limit, and braking following three conditions simultaneously satisfied) d
probability p,, which will be defined more specifically in the <uv ., (2) v'>0 att, (3) v'=0 att+1.
next section. The exact results have been obtained in a spe- The speed of the car ahead is denotedvby The first
cial casg5]. Only the analytical properties of the speed limit condition implies two cars are near, i.e., the position of the
v max have been studied. The effects of braking probabgity car ahead can be reached by the next time step. Otherwise, a
are totally neglected, i.ep;=0. In this paper, we study car accident is not likely to occur. The last two conditions
analytically the effects of braking probabilify;. Exact so- require a moving car ahead and its sudden stop at the next
lutions are obtained for the occurrence of car accidents in ime step. The simultaneous satisfaction of these three con-
traffic model. An interesting limip;—0 is discussed. ditions describes a dangerous situation on road. The occur-
rence of car accidents is expected to be proportional to the
occurrence of such dangerous situations. The proportional
constant is denoted by,, i.e., when these three conditions
The Nagel-Schreckenberg model is a basic model of trafare satisfied, a car will cause an accident with a probability
fic flow on a single-lane highwaj6]. Both the space and p,. In the numerical simulations, the car accident defined as
time are discretized. The road is divided into discrete cellsa car that hits the car ahead, does not really happen. We are
Each cell can be either empty or occupied by a car. WitHooking for those dangerous situations on the road and take
prescribed rules, the motion of these cars is determined bihem as the indicator to the occurrence of car accidents. The
updating the configuration at discrete time steps. The modgirobability per carandper time stegor an accident to occur
has two parameters: the speed limit,, and the braking is denoted byP,.. As P, is proportional top,, we will
probability p;, which are applied to all cars. For each car, thestudy the quantity?,./p, and leave the probabilitp, un-
speed is also an integere {0,1, . . . p mag, Which is mainly  specified. In Refs[3,4], the functionP,.(p) is studied nu-
determined by the distance to the car ahead. When the disaerically with two parameters! o and p;. The analytical
tance increases, the car accelerates; when the distance gweperties ofv ., has been reported i5]. In the next sec-
creases, the car slows down. The configuration is then upion, we will study the analytical properties pf. The exact
dated by the following four specific rules sequentially. results in the case ofv,,=1 wil be obtained.

Il. CAR ACCIDENTS
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IIl. MEAN-FIELD THEORY 0.20 I f I |

The simplest analytical approach is a microscopic mean-
field theory, where correlations between cells are completely
neglected. Withv ,ox=1, there are three configurations for a
single cell. Three variables are employe®; with i
€{x,0,1}, and denote the probability to find an empty cell, a
stopped cara car with speed)) and a moving cafa car ©
with speed }, respectively. The normalization of probability
gives s

Qxt+Qo+Q=1. ()
As the number of cars is conserved, we have 0.05 -
Qo+ Q1=p. 2

The master equation for the stationary state leads to

Qol (1—p1)Qx]=Q1[P1Qx+ Qo+ Q4]. ©)

The left-hand side gives the decreasing@f within a time i | function of )
step; the right-hand side gives its increasing. The cell with q FIG. 1. ProbabilityP,; (scaled byp,) as a function of density

0.16+ -I

0.10+ 4

0.00 | } i I

p

: - . : . or p,=0.5. The data points are the results of nhumerical simula-
stopped car will Char_1ge its configuration if the_car_ has a ions. The dashed line is the simple mean-field result. The solid line
empty cell in front of it(a factorQ,) and the braking is not . . . i .

. . is the mean-field result with nearest-neighbor correlation.
applied[a factor (1-p;)]. On the contrary, a moving car
will be stopped in three different situations. The first one isin the fundamental diagrartflow vs density is a general
that the car has an empty cell in front of(é factorQ,) but  feature due to “particle-hole” symmetrgwhich means that
the braking is applieda factorp,). The second one is that driving a car to _the ri_ght is the same as driving an empty cell
the car has a stopped car ahéadactorQ). The third one  to the lef) and is valid for any value of;.
is that the car has a moving car ahéadactorQ;). We note The short-range correlations between the cells can be
that the third situation is a characteristic for the parallel up{aken into account in a systematic improvement of the mean-
date. The balancing between the decreasing and increasing ##!d theory[7]. Considering the nearest-neighbor correla-
Q, leads to the same equation. Thus the following analyticafions. there are nine variableg;; with i, € {x,0,1}, which

expressions can be solved describe the configurations of two nearest-neighboring cells.
Similarly, the values ofQ;; can be solved analytically. The
Q,=1-p, (4) ~ normalization gives
Quxt Qxot Qa1+ Qoxt+ Qoo+ Qoit+ Qix+ Q0+t Qi =1. (8)
Qo=p—(1=p)p(l=p), (5 ~ % O =X ORI eI e
The conservation of density gives
=(1- 1-p). 6
Qu=(1=pup(1p) © Qo Qut Qo 2Qe0t 2Qor+ Quet 2Qugt 2Qu=2p.
With these three variables, an analytical expression for the ©
probability P,. can be obtained as The stationary probabilities are determined by the dynamics
of the update rules. It is interesting to note that the parallel
_P2 update implies that two of the nine variables vanish, i.e.,
Pac= p (1+Q0(Qu(Qo), 0 Qo;=Q1;=0. A moving car must leave an empty cell be-

hind. These two forbidden configuration0(} and {11})
where the factors in three parentheses correspond to the thrgge also known as the Garden of Eden states of the dynamics
conditions of accidents, respectively. The first condition re{8]. The equations for the stationary probabilities can be ob-
quires the number of empty celig front of the caj to be  tained by the combination of conditional probabilities. For
zero or one. The second condition requires a movindgtb&  example, the equation fd@,, reads
car aheafl The third condition requires a stopped d#re
car ahead in the next time steffhe result are shown in Fig. (1-p1)Qox*+(1—Pp1)Qix
1. As both the spatial and temporal correlations are ne- Quxt Qoxt+ Qi
glected, this formula is not expected to give an accurate de-
scription. The simple mean-field theory overestimates the :[QXX+ p1Q0x+plQ1X} [(1—p1)Q0x}
value of P, considerably in the low-density region, which Quxt Qoxt+ Q1x x0 Qoxt Qoo
can be related to the underestimation of the flow. We note
that the apparent symmetry with respecpte0.5 in Fig. 1 is + [Qxx+ P1Qox* plQlX} [(1_ pl)QlX} (10)
an artifact ofp;=0.5. On the contrary, the same symmetry QuxT QoxT Qux “ Qi+ Quo |

QXX
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FIG. 2. ProbabilityQ;; as a function of density for p,;=0.5. FIG. 3. ProbabilityP,. (scaled byp,) as a function of density

The data points are the results of numerical simulations. The solifor variousp;. The data points are the results of numerical simula-
lines are the mean-field results with nearest-neighbor correlationstions. The solid lines are the mean-field results with nearest-

. . . . neighbor correlations.
The left-hand side gives the decreasing@f,; the right- 9 I

hand side gives its increasing. There are six more equations

for Q,0,Q1,Q0x , Qoo Q1x, andQyo, which are not shown. Where the factors in three parentheses still correspond to the
These equations are not linearly independent of each othethree conditions of accidents, respectively, and the combina-
However, together with Eqdg.8] and [9], they provide a tion of conditional probabilities has been applied. We note
unique solution forQ;; . For example, the solution fa@,,  that, as required in the first condition, the number of empty

reads cells must be one. Since a moving car must leave an empty
1-V1=4(1—pyp(1-p) cell behind, the case without an empty cell is excluded. We
Qu=1—-p— 2(1=py) (1)  further note that the temporal correlation in the third condi-
M

tion is taken into account in the third parenthesis. For a mov-
Similar expressions faRyo,Qx1,Qox:Qo0,Q1x» @NdQipare  ing car to stop in the next time step, the moving car is pre-
obtained, which are shown in the Appendix. These analyticacrihed to either have a stopped car ahead or have an empty
expressions provide the exact results, see Fig. 2. cell in front of it but the braking is applietith probability
Next, the value of,. can be rewritten as p,). Again, the moving car cannot have another moving car
Q1 Q101 P1Q1x ahead, i.e.Q;,;=0. As expected, this formula gives an exact
Quxt Qo+t Qu1/ | Qo+ Qe /)’ result for the value oP,., see Fig. 3. With the analytical
expressions oQ;; , the above equation can be rewritten as

P2
p,.=-=
ac p (QOx+le)

|
[(1-p1)(3p—2p?)—1]—-[(1—p1)p—1]V1—-4(1—py)p(1l—p)
2(1-py)p? '

Pac=P2 (13

IV. DISCUSSION maximum, and then decreases with further increase éfs

he braking probabilityp, increases, the value éf,; is en-
anced in the low-density region and suppressed in the high-

density region. With the exact solution in E@.3), various

quantities can be calculated analytically. For example, in the

II;_igh—density region, we have

In summary, we obtain exact results for the occurrence o
car accident® .. in the asymptotic steady state as a function
of the car density and the degree of stochastic brakipg
in the Nagel-Schreckenberg traffic model with=1. The
analytical approach is based on a phenomenological mea
field theory with nearest-neighbor correlations. Both the spa- Pac~Pa(1—p1)(1—p). (14)
tial and temporal correlations have been considered. As the
density p increases the value d?,. increases, reaches a Conservative drivingwith a large stochastic braking prob-
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0.25 I I 0 for p<0.5,
+ p, =01
x p’ - 001 Pac= 0 (2p—1)(1—p) for p=0.5 (18)
F A 2— = VU.J.
020+ © p,; = 0 (random) -+ Pz
° p; = 0 (jammed) However, this formula does not describe the numerical re-
sults. Withp,;>0, the dynamics are stochastic. The station-
0.15- 4 ary probabilitiesQ;; and P, are independent of the initial
< configurations. The solution is unique, as shown in @§).

o j With p;=0, the dynamics becomes deterministic. Some of
A’ # P the equations become identity, and the rest of them do not
0-10- y X T provide a unique solution. The stationary probabilit@s

& andP,. depend on the initial configurations. Different initial
++'* ‘ configurations will lead to different results, see Fig. 4. If we
0.051 ++*’ + start with a random configuration, the exact results[&te
+F % '
o & 0 for p<0.5,
-P“+++ X
. i 4t 20O _ ©00000000000000000gOOCO00000000 P = 2 - 1 1_ 19
> 0.2 0.4 0.6 0.8 1 | p2 2 ;( 2 for p=0.5. 9
P If we start with a jammed configuration, the valueRf; is

greatly reduced. In the asymptotic steady state, the occur-
rence of accidents becomes a finite-size effect. In such case,
there will be no accidents in the limit— oo,

FIG. 4. ProbabilityP, (scaled byp,) as a function of density
for variousp,. The dashed lines are the exact resultsgfor0.1
and 0.01. The solid line is the limiting case pf—0. The data
points are the results of numerical simulations. The circles are the
results forp,;=0 with random initial configurations. The squares APPENDIX

are the results fop; =0 with jammed initial configurations. To be complete, we list the analytical expressions for the

ability) does reduce the occurrence of accidents. This is nq Ix variablesQ,o,Qu1Qox+Qoo, Qux, andQyo in the follow-

true in the low-density region, where we have g
!
Pac~P2P1(1—p1)p. (19 Q"0_1—p1X’
The occurrence of accidents is also reduced in the case of Qu=4&,
aggressive drivingwith a small stochastic braking probabil-
ity). The value ofP,. increases with the increase of density X A2
p at a maximum slope in the casepf=0.5. The maximum Qox= 1-p; C(1- p)p’
of P,. can also be calculated analytically as p .
Pac(p')= [P2(1-p1)1/4, (16 Qo= P == g+ T=pop
where the corresponding density is X2
p'=2/(3+p;). (17 le:m,

As the phenomena of car accidents involves strong corre- )
lations, the success of phenomenological mean-field theory Qo= X— X
is encouraging. However, the success cannot be extended to 10 (1-py)p’
the case ob 51, where only the approximate results are
obtained. where X=3[1—1—-4(1—p,)p(1—p)]. Comparison to

We also find that the limip;— 0 is nontrivial. Withp;  the numerical results are shown in Fig. 2. In the special case
=0, Eq.(13) reduces to of p;=0.5, we haveQ,=Q,;.
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